Comparative migration and development of astroglial and oligodendroglial cell populations from a brain xenograft.

نویسندگان

  • C Jacque
  • J Quinonero
  • P V Collins
  • H Villarroya
  • I Suard
چکیده

In previous studies of brain transplantation, the fate of the implanted glial cells has been investigated separately; that is, the interest has been focused either on the astroglia or on the oligodendroglia. However, the two populations of implanted glial cells may interact with each other, for example by secreting species-specific factors or by inducing reactions by the host. We have used two different models of brain transplantation: one that allows the identification of the implanted astrocytes, and another that allows the identification of the implanted oligodendroglia. The present model is a combination of both; it consists of the grafting of embryonic rabbit brain fragments into the brains of neonatal Shiverer mice. The myelin made by the implanted oligodendrocytes is identified by anti-myelin basic protein immunohistochemistry. The implanted astrocytes are identified by a monoclonal antibody that combines with rabbit but not with mouse glial fibrillary acidic protein. This study shows that although they use the same major routes of migration, both populations of glial cells tend to move differently. They demonstrate areas of common settlement but also areas where only one population of implanted glia is present. From the site of implantation in the dorsal striatum, the major routes of migration are the corpus callosum, the white matter fascicles in the striatum, and the internal capsule. After a delay of 6 weeks, no significant prevalence of one population of implanted glial cells over the other was observed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ALTERATIONS OF ADP-RIBOSYLATION AND DNA-BREAKS IN AGING BRAIN CELLS

Neuronal and astroglial cells were prepared from whole brain of three month and 30-month- old rats for study of alterations in the nuclear poly ADP-ribosylation and DNA breaks with age. The relative purity of the cell preparations was confirmed by the determination of the neurofilament (low molecular weight) and glutamine synthetase content of the cells using ELISA. An increase (75%) in th...

متن کامل

High neuronal/astroglial differentiation plasticity of adult rat hippocampal neural stem/progenitor cells in response to the effects of embryonic and adult cerebrospinal fluids

Hippocampal neural stem/progenitor cells (hipp-NS/PCs) of the adult mammalian brain are important sources of neuronal and gial cell production. In this study, the main goal is to investigate the plasticity of these cells in neuronal/astroglial differentiations. To this end, the differentiation of the hipp-NS/PCs isolated from 3-month-old Wistar rats was investigated in response to the embryonic...

متن کامل

P75: Expression of GDNF Genes in the Cerebellum of Rat Neonate Born to Mother with Diabetes

Diabetes Mellitus as a common metabolic disorder in women of reproductive age is rising throughout the globe. Diabetes in pregnancy has various adverse outcomes on different organs development including the central nervous system (CNS) and it can cause learning deficits, behavioral problems and motor dysfunctions in the offspring. The cerebellum is a part of brain that coordinates voluntary mov...

متن کامل

Adult Hippocampal Neurogenesis and Memory

Adult neurogenesis, a concept emergent in the late 1990s, is the generation of new neurons in the adult brain. This process occurs thank to cells who have this proliferative feature, named as Neural Stem Cells (NSCs). Neural Stem Cells (NSCs) are primary progenitors who can generate the two neural types (neurons and glia). Classically it was assumed that NSCs are only present in the embryo, but...

متن کامل

Adult Hippocampal Neurogenesis and Memory

Adult neurogenesis, a concept emergent in the late 1990s, is the generation of new neurons in the adult brain. This process occurs thank to cells who have this proliferative feature, named as Neural Stem Cells (NSCs). Neural Stem Cells (NSCs) are primary progenitors who can generate the two neural types (neurons and glia). Classically it was assumed that NSCs are only present in the embryo, but...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 12 8  شماره 

صفحات  -

تاریخ انتشار 1992